Merge Sorted Array - LeetCode
https://leetcode.com/problems/merge-sorted-array/?envType=study-plan-v2&envId=top-interview-150
You are given two integer arrays nums1
and nums2
, sorted in non-decreasing order, and two integers m
and n
, representing the number of elements in nums1
and nums2
respectively.
Merge nums1
and nums2
into a single array sorted in non-decreasing order.
The final sorted array should not be returned by the function, but instead be stored inside the array nums1
. To accommodate this, nums1
has a length of m + n
, where the first m
elements denote the elements that should be merged, and the last n
elements are set to 0
and should be ignored. nums2
has a length of n
.
Example 1:
Input: nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
Output: [1,2,2,3,5,6]
Explanation: The arrays we are merging are [1,2,3] and [2,5,6].
The result of the merge is [1,2,2,3,5,6] with the underlined elements coming from nums1.
Example 2:
Input: nums1 = [1], m = 1, nums2 = [], n = 0
Output: [1]
Explanation: The arrays we are merging are [1] and [].
The result of the merge is [1].
Example 3:
Input: nums1 = [0], m = 0, nums2 = [1], n = 1
Output: [1]
Explanation: The arrays we are merging are [] and [1].
The result of the merge is [1].
Note that because m = 0, there are no elements in nums1. The 0 is only there to ensure the merge result can fit in nums1.
Constraints:
nums1.length == m + n
nums2.length == n
0 <= m, n <= 200
1 <= m + n <= 200
109 <= nums1[i], nums2[j] <= 109
Follow up: Can you come up with an algorithm that runs in O(m + n)
time?
有时候while比for写出来逻辑性更强,特别是使用类似指针的方式。
class Solution:
def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:
"""
Do not return anything, modify nums1 in-place instead.
"""
p1 = len(nums1) - 1
p2 = len(nums2) - 1
while p1 >= 0 and p2 >= 0:
if nums1[p1] == 0:
nums1[p1] = nums2[p2]
p1 -= 1
p2 -= 1
else:
p1 -=1
nums1.sort()
class Solution:
def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:
"""
Do not return anything, modify nums1 in-place instead.
"""
p1 = m - 1
p2 = n - 1
p3 = m + n - 1
while p1 >= 0 and p2 >= 0:
if nums1[p1] > nums2[p2]:
nums1[p3] = nums1[p1]
p1 -= 1
else:
nums1[p3] = nums2[p2]
p2 -= 1
p3 -= 1
while p2 >= 0:
nums1[p3] = nums2[p2]
p2 -= 1
p3 -= 1
第一种方法用了sort,不是很好,方法2显然是更好的解法。
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
int p1 = m - 1;
int p2 = n - 1;
int p3 = m + n - 1;
while (p1 >= 0 && p2 >= 0){
if (nums1[p1] > nums2[p2]){
nums1[p3] = nums1[p1];
p1--;
}
else {
nums1[p3] = nums2[p2];
p2--;
}
p3--;
}
while(p2 >= 0){
nums1[p3] = nums2[p2];
p2--;
p3--;
}
}
}
class Solution {
public:
void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
int p1 = m - 1;
int p2 = n - 1;
int p3 = m + n - 1;
while (p1 >= 0 && p2 >= 0){
if (nums1[p1] > nums2[p2]){
nums1[p3] = nums1[p1];
p1--;
} else{
nums1[p3] = nums2[p2];
p2--;
}
p3--;
}
while (p2 >= 0){
nums1[p3] = nums2[p2];
p2--;
p3--;
}
}
};
Merge Sorted Array问题概述:
问题:
给定两个已排序的整数数组nums1
和nums2
,以及它们的元素数量m
和n
。你的任务是将nums2
合并到nums1
中,使得nums1
成为一个已排序的数组。不应该返回合并后的数组,而是直接修改nums1
数组。
注意:
为了简化问题,nums1
的长度等于m + n
,其中前m
个元素代表应合并的元素,其余的元素都是0。而nums2
的长度则是n
。
解决策略:
- 双指针法 - 从后往前合并:
- 最简单的思路是先合并,再排序。但这种做法不够高效,因为它没有利用到
nums1
和nums2
都是有序的特点。 - 我们可以使用双指针法从后往前合并。这样做的好处是在
nums1
的后部分已经是空的,我们可以直接在那里放置合并后的结果,不会影响到nums1
的其他部分。 - 具体来说,我们分别为
nums1
和nums2
设置一个指针,初始位置为m-1
和n-1
,然后比较这两个指针指向的值,把较大的值放到m+n-1
的位置上,然后移动指针和目标位置。 - 这种方法的时间复杂度是O(m+n),因为每个元素只被处理一次。
- 最简单的思路是先合并,再排序。但这种做法不够高效,因为它没有利用到
- 先合并,再排序:
- 这种方法简单直观,但它的时间复杂度较高,为O((m+n)log(m+n)),因为需要对整个数组进行排序。
总结:
Merge Sorted Array问题是合并两个有序数组的经典问题,考察了数组操作和双指针技巧。从后往前的双指针方法是一个非常高效的解法,充分利用了两个输入数组的已排序特点。